Modern architecture from the 3D printer

Alamir Mohsen Photo: Astrid Ludwig
Alamir Mohsen Photo: Astrid Ludwig

Doctoral student at TU Darmstadt awarded “Kultur-Kreativpiloten” prize

Facades do not have to remain straight, level and conventional. In future, boldly curved, geometrically sophisticated glass facades for houses, offices or residential towers are conceivable with the help of the 3D printer. The printed metal façade nodes developed by TU doctoral student Alamir Mohsen could revolutionise architecture. For the patented invention the facade technician received the “Kultur-Kreativpiloten” prize of the Federal Government on Tuesday (12.11.) in Berlin. more

Joint Research Training Group of TU and KIT Launches

Co-Speaker: Prof. Ralf Riedel Photo: Klaus Völker
Co-Speaker: Prof. Ralf Riedel Photo: Klaus Völker

Extremely heat-resistant new material composites

The German Research Foundation (DFG) has approved a new Research Training Group (GRK) jointly applied for by the TU Darmstadt and the Karlsruhe Institute of Technology (KIT). The researchers want to contribute to significantly reducing global energy consumption. The Research Training Group, which will start in mid-2020 with a duration of four and a half years, is entitled “Composite materials for applications under extreme conditions”. more

Targeted disruptive manoeuvres

Dr. Xufei Fang Photo: Klaus Völker
Dr. Xufei Fang Photo: Klaus Völker

The Athene Young Investigator and materials scientist Xufei Fang is researching the improvement of ceramics and new applications.

Reinventing ceramics as a material – this is the goal of the TU materials scientists who are researching the Reinhart-Koselleck project funded by the German Research Foundation (DFG). The team includes Dr. Xufei Fang, selected by the Technical University as one of the new Athene Young Investigators. Since April 2019, he has been junior group leader at the TU Darmstadt in the ceramics group of Prof. Jürgen Rödel in the DFG-funded Koselleck project.


3D-printed bridge at the Lichtwiese

Shake hands over the bridge: Thilo Feucht & Maren Erven Photo: Klaus Völker
Shake hands over the bridge: Thilo Feucht & Maren Erven Photo: Klaus Völker

Scientists from the “AM Bridge 2019” research project at TU Darmstadt are revolutionizing steel construction. Their goal: a 3D-printed steel bridge over flowing water. The demonstration project on the site of the Department of Civil and Environmental Engineering at Lichtwiese has now been completed. The plan: Welding a complete bridge over water.

But the people in Darmstadt wanted more: Instead of printing individual components, the robots welded the bridge as a whole, on site and over water. The idea was realized with the help of the “CMT Cycle Step” welding process. What's special about it is that welding spots can be produced in any size and precisely reproduced.


Young Talent Award “Curious Mind” for Prof. Ulrike Kramm

Jun. Prof. Dr. Ulrike Kramm
Jun. Prof. Dr. Ulrike Kramm

We are very proud and congratulate our member Prof. Ulrike Kramm on the “Curious Mind” research prize awarded by Merck and Manager Magazin. Materials scientist and TU professor Ulrike Kramm (40) received the EUR 7500 award for her work in the “Mobility and Energy” category.

Ulrike Kramm has held a bridge professorship between chemistry and materials science at the TU Darmstadt since 2015.


Sensors from bioinspired nanopores

Professor Wolfgang Ensinger & Ivana Duznovic Photo@Katrin Binner
Professor Wolfgang Ensinger & Ivana Duznovic Photo@Katrin Binner

Interdisciplinary team enables targeted substance detection

Doctors and environmental analysts want microchips that measure substances directly on site. Scientists at TU Darmstadt have developed and patented a nanopore-based system with broad potential.


Understanding artificial bones better

Interdisciplinary success: Bianca Bertulat, Tom Engler, Anne Martin and Professor Matthias Oechsner (from left). Photo@Katrin Binner
Interdisciplinary success: Bianca Bertulat, Tom Engler, Anne Martin and Professor Matthias Oechsner (from left). Photo@Katrin Binner

New test chamber enables simulation of processes in the body

Teams from the departments of mechanical engineering and biology at the TU Darmstadt observe the growth of cells on bone implants. For this purpose, they have developed a special test chamber that is intended to make some animal experiments superfluous.

Hip and knee joints made of titanium, vertebral bodies made of plastic and other bone implants have already relieved many patients of pain. However, some people who wear such endoprostheses suffer from complications, for example if the artificial bone does not grow in properly. “What exactly happens in the body after implantation is still unclear,” says materials scientist Anne Martin from the Institute of Materials Science at the Department of Mechanical Engineering at Darmstadt Technical University. Together with her former colleague Markus König and researchers from Bianca Bertulat's Department of Biology, she has developed a model system that simulates the first days after the insertion of a bone implant.


What will we use to cool tomorrow?

Prof. Dr. Oliver Gutfleisch, Functional Materials Photo@Katrin Binner
Prof. Dr. Oliver Gutfleisch, Functional Materials Photo@Katrin Binner

Scientists evaluate the potential of materials for magnetic cooling.

For the year 2060, futurologists expect a paradigm shift in global energy consumption: for the first time, mankind will then use more energy for cooling purposes than for heating. The increasing penetration of cooling applications in our everyday lives has resulted in a steadily growing ecological footprint. New processes such as magnetic cooling could minimize this impact on the climate and the environment. Researchers at the TU Darmstadt and the Helmholtz Centre Dresden-Rossendorf (HZDR) have examined the materials currently in question for their suitability in more detail. The result of their work is the first systematic material library with important parameters, which they have now published in the journal Advanced Energy Materials.


DFG Funding for Professor Jürgen Rödel

Professor Jürgen Rödel Photo@Claus Völker
Professor Jürgen Rödel Photo@Claus Völker

Materials scientists at the TU Darmstadt want to reinvent the material ceramics. To do this, they intervene in its atomic structure. The German Research Foundation (DFG) is funding this as part of a highly endowed Reinhart Koselleck project.

When you think of ceramics, you think of dishes or sharp knives. However, Professor Jürgen Rödel from the Department of Non-Metallic Inorganic Materials at TU Darmstadt believes that much more can be gained from the hard and brittle material than the huge selection of sensors or capacitors already known.


Researchers use machine elements as sensors

Tobias Schirra (l.) & Georg Martin (r.). Photo@Karin Binner
Tobias Schirra (l.) & Georg Martin (r.). Photo@Karin Binner

Tobias Schirra, who specializes in product development and machine elements, spent one and a half years researching further development together with his colleague from the department, Georg Martin. They have turned a standard rolling bearing into a sensor bearing that can be used to measure loads and lubricant film thickness, among other things. The new development is intended to help “estimate the time of the next maintenance or when the component needs to be replaced,” reports Schirra. The service life can thus be predicted better and operating procedures can be designed more smoothly.

The TU researchers have not installed any additional measuring sensors, but instead use the electrical properties of the rolling bearing itself as a sensor. Tobias Schirra explains the principle in simple terms: “We hold a kind of voltage measuring device to the bearing rings. The advantage of TU technology: ”Other bearings on the market equipped with extra sensors require more space. Our development, on the other hand, does not take up more space than a conventional bearing,“ he emphasizes.

At the Hannover Exhibition, the TU researchers presented their technology and established contacts with companies. Initial reactions, Mr. Schirra and Mr. Martin report, were already encouraging. ”Thanks to the support of the Pioneer Fund, we can now concentrate on further development work," they say. The support ensures a full-time position for the next one and a half years.

The Hessian Minister for Digital Strategy Prof. Kristina Sinemus and Development visits BAMP!

Prof. Schabel, Ministerin Kristina Sinemus, Prof. HansJürgen Prömel, Prof. Schneider u.a.
Prof. Schabel, Ministerin Kristina Sinemus, Prof. HansJürgen Prömel, Prof. Schneider u.a.

The Hessian Minister for Digital Strategy and Development Prof. Kristina Sinemus visited the TU Darmstadt together with several members of the Hessian Parliament to inform herself about the interdisciplinary LOEWE project BAMP! Prof. Schabel, Prof. Schneider and Prof. Auslender gave the interested members of the state parliament an exciting overview of the BAMP! paper construction project, which is supported by the state of Hesse.

The focus, promoted by the LOEWE program of the state of Hesse, is intended to contribute in the long term to systematically opening up the advantages of paper as a material for the construction industry and to establishing conditions for a new economic field with an internationally visible focus in Hesse and to anchor it in the long term at the participating universities and colleges. BAMP

TU successful in the ideas competition “Real Laboratories of the Energy”

We are happy and congratulate our member Prof. Jens Schneider and his team:

Federal Minister of Economics Peter Altmaier today announced the winners of the “Real Laboratories of the Energy Turnaround” competition, including the TU with its DELTA project outline. The aim is to test sustainable energy technologies under real conditions and on an industrial scale. Nationwide, the Federal Ministry of Economics and Energy (BMWi) awarded prizes to 20 consortia, which can now submit their applications for funding in the coming months. The BMWi is providing 100 million euros annually for this purpose.

As consortium leader of the DELTA project, Professor Jens Schneider from the Institute for Statics and Design at the TU, in close cooperation with the Institute for Production Management, Technology and Machine Tools (PTW) under the direction of Professor Eberhard Abele, is working on energy-optimised neighbourhoods with the aim of reducing energy consumption and carbon dioxide emissions in urban neighbourhoods. To this end, Darmstadt is linking several types of neighbourhood, from industry, commerce and education to housing, with network infrastructures in the areas of electricity, heat, gas, communications and transport in order to reduce energy requirements as far as possible and use energy efficiently.

The TU also took part in the ideas competition with the Institute for Mechatronic Systems in Mechanical Engineering, the Department of Electrical Energy Supply using Renewable Energies and the Construction Management and Technical Operations Department.

read more

Flexible sun protection made of perforated textiles

Professor Stefan Schäfer demonstrate the prototype
Professor Stefan Schäfer demonstrate the prototype

Sun protection systems for buildings typically are available as louvre systems (venetian blinds) and as textile blinds (roll-down blinds). Venetian blinds do not illuminate the room optimally and require more maintenance effort especially as outdoor systems. Conventional textile roll-down blinds provide better illumination of rooms because of diffuse blinding effects, but cannot completely prevent glare effects and do not allow individual adjustment of light transmission.

A sun protection system which promises a high adaptability with low production and maintenance costs at the same time is planned to be developed within this research project. For this purpose, special patterns are laser-cutted on textile surfaces which effects 3D deformation under tensile stress. The effect is possible through textile “joints“ within the perforated surface only.

Therefore, stepless adaption is doable by controlled insertion of tensile stress. This offers the possibility to react to changing light conditions individually.

At the same time, the deformation needs no additional components, which extends the life span of the system positively. read more

How squares become curves

Aus Fertigteilen zusammengesetzte Ziegelschale. Bild: virtuaethic
Aus Fertigteilen zusammengesetzte Ziegelschale. Bild: virtuaethic

Researchers at TU Darmstadt develop shell structures from prefabricated brick parts

For centuries, vaulted brick constructions were an established method of bridging large rooms and spans without columns. Due to the great effort involved in their manufacture, this type of supporting structure is no longer used today. A research team at Darmstadt Technical University has now developed a process that enables the cost-effective production of multiple-curved brick shells from flat prefabricated parts.

Thin load-bearing constructions are called planar structures. If these are additionally curved, one speaks of shells. Shell structures made of bricks are highly load-bearing, aesthetic and can cover large spans with small cross-sections. However, their manufacture is material- and personnel-intensive, above all because a substructure in the form of a full-surface so-called falsework is required for construction. This determines the curvature and can only be removed after complete completion, as brick shell structures are only fully load-bearing with the last stone. This type of load-bearing structure is therefore practically never used.

In a research project of the Institute for Constructive Design and Building Construction (KGBauko) at the Department of Civil and Environmental Engineering at the TU Darmstadt, a team led by Alexander Pick within the framework of the ZukunftBau research initiative has investigated whether and how brick shells can be produced economically – for example by using prefabricated parts. The work was carried out in two stages: first digitally on the computer, then with bricks in field trials. The design and calculations of the brick shell were carried out with the aid of a computer model. A prototype 15 meters long and 11.5 centimeters thick with multiple curved geometry was designed on the computer as a 3D model. A complex, static and constructionally rather unfavourable geometry was deliberately chosen in order to prove the efficiency of the principle. read more

FLAME at the Hessentag 2019 in Bad Hersfeld, Germany

Im LOEWE-Schwerpunkt FLAME wird erforscht, wie sich die Eigenschaften von Funktionsmaterialien über deren elektronische Struktur einstellen lassen. Bild: Hans Braxmeier
Im LOEWE-Schwerpunkt FLAME wird erforscht, wie sich die Eigenschaften von Funktionsmaterialien über deren elektronische Struktur einstellen lassen. Bild: Hans Braxmeier

This year's Hessentag will take place from 7 to 16 June in Bad Hersfeld. The TU Darmstadt will be represented with LOEWE projects at the “Hessen schafft Wissen” stand in order to present itself to a broad public. With the LOEWE Excellence Programme, the state of Hesse is promoting forward-looking research projects. FLAME will be represented at the Hessentag 2019 daily from June 12th to 13th from 10 am to 7 pm.

Modern technologies are inconceivable without new materials with improved or completely new properties. In order to contribute to a sustainable future, these materials should also make it possible to reduce the consumption of energy and raw materials and be composed of environmentally compatible components using environmentally friendly manufacturing processes. Within the LOEWE focus FLAME Flame(Fermi Level Engineering Antiferroelectric Materials for Energy Storage and Insulators), previously unused relationships between the electronic structure of a material and its properties are used to produce antiferroelectric materials that are free of toxic lead, without which satisfactory properties cannot yet be achieved.

For more informations please look here

Materials Valley – PMP introduces itself

Prof. Oechsner/ A. Elsen/ Prof. Weidenkaff/ Prof. Riedel/ Prof. Biesalski/ A. Brumby
Prof. Oechsner/ A. Elsen/ Prof. Weidenkaff/ Prof. Riedel/ Prof. Biesalski/ A. Brumby

In June 2019, the PMP area had the opportunity to present itself to the attending specialist audience from research, science and industry at an event of the Materials Valley association at Heraeus Holding GmbH in Hanau. PMP

The association Materials Valley e.V. was founded in spring 2002 with the participation of industrial companies, universities, research institutes, institutions of the federal states to promote technology and business and private individuals. Materials Valley

Zuverlässigkeit von Bauteilen vorhersagen

Gebäudeanimationsbild „Center for Reliability Analytics“. Bild: mtp architekten / Frankfurt
Gebäudeanimationsbild „Center for Reliability Analytics“. Bild: mtp architekten / Frankfurt

Die TU Darmstadt kann Vorbereitungen für den Bau eines neuen Forschungsgebäudes auf dem Campus Lichtwiese treffen. Der Wissenschaftsrat hat in seiner Frühjahrssitzung die Förderung eines „Center for Reliability Analytics“ (CRA) mit Bundesmitteln empfohlen. Mit dem Komplex möchte die TU Darmstadt die Infrastruktur schaffen, um die Zuverlässigkeit von Bauteilen über deren gesamten Lebenszyklus hinweg digital gestützt zu bewerten. Geplant ist, den Bau 2021 zu beginnen und bis Ende 2023 fertig zu stellen.

Ein maßgebliches Qualitätskriterium für Produkte im Maschinen- und Anlagenbau ist deren Zuverlässigkeit. Sie vorausschauend zu bewerten und das Design von Bauteilen danach auszurichten ist von zentraler Bedeutung. Digitale Methoden, Konzepte und Modelle spielen dabei eine zunehmende Rolle. Mit der Gründung des CRA soll nun an der TU Darmstadt die Infrastruktur für die Erarbeitung der wissenschaftlichen Grundlagen für eine digitale Zuverlässigkeitsbewertung von Bauteilen geschaffen werden. weiter

Two awards for Prof. Dr. Ralf Riedel

Prof. Ralf Riedel in China
Prof. Ralf Riedel in China

Prof. Dr. Ralf Riedel, Fachbereich Material- und Geowissenschaften, received the “High-Level Foreign Experts of Thousand-Talent” Award of the Shaanxi Province in China. The prize is endowed with 500.000 Chinese Yuan (ca. 65.000 Euro) and honors Prof. Riedel´s scientific cooperation with the Northwestern Polytechnical University in Xi´an, P.R. China, in the frame of the Joint International Research Laboratory of Ultrahigh Ceramic Matrix Composites founded in 2017.

Furthermore, Prof. Riedel was honored with a Guest Professorship at the University of Tokyo within the JSPS Invitational Fellowships for Research-Programs in Japan for the scientific cooperation in the field of electron microscopic investigations of the microstructure and solid state crystal structure of advanced nitride based materials. Host at the University of Tokyo is Prof. Dr. Yuichi Ikuhara.

Washing sludge as an alternative raw material

TU researchers develop novel expanded granulate from waste products

Sand and gravel are important raw materials for a wide range of building materials, which are extracted by surface or wet mining. They are washed in processing plants and classified according to grain size. In this process, a fine grain fraction that cannot be used directly is separated as a suspension, the so-called washing sludge. This water-solid mixture, which also contains clay particles, remains in the mining area and is no longer used.

“Central Europe is estimated to produce 50 million tons of washing sludge every year, which has so far been almost completely untapped”, says Professor Eddie Koenders, head of the Institute of Construction and Building Materials (WiB) at TU Darmstadt. Of the 15 million tons produced annually in Germany, only about 0.7 percent would be used.

As part of a research project funded by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) and the Zentrales Innovationsprogramm Mittelstand (ZIM), a team at WiB is developing a production process as well as possible raw material compositions for the manufacturing of expanded granules from washing sludge. The expanded granules are fine-pored, mineral, spherical structures with a closed-pored surface that can be produced in various sizes.

Please read here

Paper bridge

The tension can be felt in the hall in the Department of Civil and Environmental Engineering. A specially constructed bridge made of paper materials will soon be built in the Botanical Garden. Before the final assembly, the Master's students of civil engineering, environmental engineering and industrial engineering (specialising in construction) still have a lot to do and discuss.

paper bridge

Ulrike Kramm receives the Adolf Messer Foundation Prize

Ulrike Kramm, junior professor at TU Darmstadt since March 2015, develops precious metal-free catalysts for energy applications. They are modeled on nature and resemble red blood dyes. For her research, she has received this year's Adolf Messer Foundation Prize worth 50,000 euros.

The award

The Adolf Messer Foundation Prize, endowed with 50,000 euros, is awarded annually. It promotes the research and teaching of young scientists at the TU Darmstadt. It honours outstanding achievements in the natural sciences, engineering sciences, economics, social sciences and the humanities.

Presseschau: HR-Beitrag zu Bauen mit Papier

Presseschau: HR-Beitrag zu Bauen mit Papier

Der Hessische Rundfunk hat Professor Ariel Auslender und Fabian Luttropp, Fachgebiet Plastisches Gestalten am Fachbereich Architektur, sowie Professor Samuel Schabel, Fachgebiet Papierfabrikation und Mechanische Verfahrenstechnik am Fachbereich Maschinenbau, bei ihrer Forschung zum Werkstoff Papier als Baumaterial über die Schulter geschaut. Herausgekommen ist ein informativer Beitrag, der zeigt, was mit Papier alles möglich ist. BAMP!

Der vom LOEWE-Programm des Landes Hessen geförderte Schwerpunkt „BAMP! – Bauen mit Papier“ an der TU Darmstadt soll langfristig dazu beitragen, die Vorteile des Werkstoffes Papier für das Bauwesen systematisch zu erschließen und Voraussetzungen für ein neues Wirtschaftsfeld mit einem international sichtbaren Schwerpunkt in Hessen zu etablieren und an den beteiligten Universitäten und Hochschulen langfristig zu verankern. bjb

Professor Helmut F. Schlaak erhält VDE-Ehrenring

Für seine weltweit anerkannten Leistungen auf den Gebieten der Mikrosystemtechnik, der Mikromechatronik sowie der Mikro- und Nanotechnik verlieh der Verband der Elektrotechnik, Elektronik und Informationstechnik e.V. etit-Professor Helmut F. Schlaak den VDE-Ehrenring. Die feierliche Übergabe fand im Rahmen des VDE Kongress „Tec Summit“ in Berlin statt.

Seit 1999 forscht und lehrt Helmut F. Schlaak an der TU Darmstadt, wo er das Fachgebiet Mikrotechnik und Elektromechanische Systeme leitet. Der VDE würdigte insbesondere seine Forschungsergebnisse zu Silizium-Mikrorelais und zu dielektrischen Elastomerwandlern, mit denen der Darmstädter Professor in herausragender Weise zum wissenschaftlichen und technischen Fortschritt beigetragen hat.

Mit seiner höchsten Auszeichnung für Verdienst in Forschung und Entwicklung ehrt der VDE weltweit anerkannte Ingenieurwissenschaftler. Der Ehrenring wird alle zwei Jahre verliehen. Helmut F. Schlaak reiht sich mit der Auszeichnung in eine Folge namhafter Forscher ein: Erstmals wurde der Ehrenring 1958 an Hans Busch verliehen. Ihm folgten weitere Wegbereiter der Elektro- und Informationstechnik wie Hans Piloty, Winfried Oppelt, Konrad Zuse oder Gerhard Sessler. sas/pg

Thermag 2018 – International conference on caloric cooling

Thermag VIII took place in Darmstadt and was organized by the functional materials group.

267 experts from 24 different countries visited the conference to exchange their recent research results and discuss the future of the field. The topics covered in the conference were extended for the first time from magnetocaloric refrigeration at room temperature to cover all the different caloric effects that are able to provide cooling at different temperatures.

The next Thermag conference will be held 2020 in College Park (Maryland), USA.

BE-AM | Symposium For Additive Manufacturing In Building 2018

Photo: Xtreee, Paris
Photo: Xtreee, Paris

Prof. Ulrich Knaack (FB 13) and Prof. Oliver Tessmann (FB 15) invited for the fourth time the international experts from the area of the additive manufacturing to the University of Technology of Darmstadt. The speakers introduced their research in the field of architecture and civil engineering. About 80 visitors pursued the presentations on the 12th of October in the Georg-Christoph-Lichtenberg-Haus in Darmstadt.

9th International Workshop on “Spinel Nitrides and Related Materials”

Photo: Dr. Shrikant Bhat
Photo: Dr. Shrikant Bhat

The 9th International Workshop on “Spinel Nitrides and Related Materials”, organized by Prof. Dr. Ralf Riedel together with PD Dr.Leonore Wiehl and Dr. Shrikant Bhat, took place from September 2th to 7th, 2018 in Rüdesheim/Rhine. 30 scientists from Japan, China, Canada, USA, France, Spain, and Germany presented and discussed their newest results on nitride-based multifunctional materials for technical applications, especially hard materials, energy materials, or catalysts. The topics covered synthesis routes, processing, characterization using various experimental methods, and theoretical modeling for the prediction of structure and properties of new materials.

The workshop was supported by the DFG, the FCI and the PMP.

WE-Heraeus-Seminar on ‘Materials Development for Automotive Propulsion’

Photo: Dr. Christina Birkel
Photo: Dr. Christina Birkel

Ulrike Kramm, Christina Birkel and Bai-Xiang Xu organized the 680th WE-Heraeus-Seminar on ‘Materials Development for Automotive Propulsion’ that took place in Bad Honnef from Oct 14th to Oct 17th 2018. About 60 scientists with physics, materials science, chemistry and engineering background came together to talk about materials challenges in battery, catalysis and syn-fuel research. Particularly unusual was the large number of female scientists that accounted for > 50 % of the participants, which was realized by providing flexible child care options.

The overall seminar was financed by the WE-Heraeus foundation that also offered great support for the organisation of the meeting. During the seminar, a discussion table was sponsored by the PMP profile area with the focus on career perspectives, work life balance and similarities/differences in scientific careers in- or outside Germany.

PMP members successful with DFG proposals “Functional Papers”: The DFG funds a package proposal (PAK 962) and individual projects with approx. 3 million Euros over three years.

Prof. Dr. Markus Biesalski
Prof. Dr. Markus Biesalski

The DFG supports the research package “Geometric and Chemical Structure of Functional Papers”, in which 7 sub-projects jointly carry out basic research on functional papers over the next 3 years. In addition, the DFG is funding further 5 individual projects focusing on the same topic for the same period. The 11 researchers at TU Darmstadt, supported by 2 colleagues from Freiburg University and TU Grenoble, have now joined forces to promote functional papers from material understanding to product innovation.

In the subprojects of the association, in which 14 doctoral students and 2 postdocs will work, the long-term goal addresses the fundamental understanding or structure-property relations of (polymer) functionalized paper, in order to explore the hitherto largely untapped potential of paper as a functional material. The subprojects will address the following key questions:

• How can a high orientation of the fibers in the paper sheet be adjusted and can an orientation of the fibers also be switched by external stimuli?

• How do fiber orientation and functionalization affect mechanical properties of paper and how do functionalized paper webs behave in the presence of liquids?

• Can polymers be incorporated into the pore structure as functional modules in such a way that they impart elastically deformable properties to paper, chemically stable paper webs are accessible or, after conversion, thermally stabilized, paper-derived materials result?

• Can the functionalization of paper fibers with polymers be better understood across scales across model systems?

• What design principles must be followed when polymer modifying papers and thermally converting them to obtain the aforementioned properties?

• In experimental work, can theoretical models be used to accompany such design principles and, ideally, to make them predictable?

From profile area PMP, the following scientists participate in this initiative as PI:

Markus Biesalski (Spokesperson), Hans-Joachim Kleebe, Regine von Klitzing (Vice-Spokesperson), Ralf Riedel, and Bai-Xiang Xu.

LOEWE Schwerpunkt „FLAME – Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren

Prof. Andreas Klein
Prof. Andreas Klein

Funktionsmaterialien für Energiespeicher

Im neuen LOEWE Schwerpunkt „FLAME – Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren“ wird erforscht, wie sich die Eigenschaften von Funktionsmaterialien über deren elektronische Struktur einstellen lassen. Koordinator ist Professor Andreas Klein. Zwölf Arbeitsgruppen aus den Fachbereichen Material- und Geowissenschaften, Chemie sowie Elektrotechnik und Informationstechnik werden Funktionswerkstoffe etwa für Kondensatoren mit hoher Energie- und Leistungsdichte entwickeln. Diese ermöglichen eine effizientere Wandlung und Übertragung elektrischer Energie aus erneuerbaren Quellen und in der Elektromobilität. Das Projekt wird begleitet von Unternehmen aus der Funktionskeramik und der Elektrotechnik sowie von der Tongji-Universität in Shanghai, einer der Partneruniversitäten der TU Darmstadt.

Der auf andere Materialien und Anwendungsbereiche übertragbare Forschungsansatz basiert darauf, optimierte elektronische Strukturen einzustellen („Fermi Level Engineering“), die mit Computersimulationen vorhergesagt und experimentell verwirklicht werden. Das ermöglicht eine zielgenaue Einstellung der Eigenschaften bei verkürzten Entwicklungszeiten.

Nukleare Photonik und schaltbare Funktionsmaterialien – diese Forschungsthemen werden zwei neue LOEWE-Schwerpunkte an der TU Darmstadt ab 2019 intensiv bearbeiten. Beide Schwerpunkte werden jeweils mit 4,65 Millionen Euro gefördert; die Laufzeit beträgt vier Jahre. Dies gab Hessens Wissenschaftsminister Boris Rhein heute im Rahmen der Förderentscheidungen für die 11. Staffel des LOEWE-Programms (Landesoffensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) bekannt.

Das Projekt „FOXON“ von Dr. Leopoldo Molina-Luna wird mit einem ERC Starting Grant über 1,8 Mio. Euro gefördert

Dr. Leopoldo Molina-Luna. Bild: Holger Menzel
Dr. Leopoldo Molina-Luna. Bild: Holger Menzel

Wir freuen uns und gratulieren Dr. Leopoldo Molina-Luna aus der Gruppe Geomaterialwissenschaft (Angewandte Mineralogie) von Prof. Kleebe zur Förderung durch den Europäischen Forschungsrat (ERC).

Drei Forschungsprojekte an der TU Darmstadt werden vom Europäischen Forschungsrat (ERC) als exzellente und innovative Grundlagen- und Pionierforschung mit ERC Starting Grants gefördert. Insgesamt fließen rund 5,2 Millionen Euro an drei Nachwuchswissenschaftlerinnen und -wissenschaftler.

Das Projekt „FOXON“ von Dr. Leopoldo Molina-Luna beschäftigt sich mit der Transmissionselektronenmikroskopie (TEM). Diese hat in den letzten zwanzig Jahren einen rasanten Fortschritt gemacht. Aberrationskorrektoren, die auf Forschungen des früheren Darmstädter Physikprofessors Harald Rose zurückgehen, drückten die räumliche Auflösung bis auf 50 Pikometer (pm). Elektronenkanonen mit hoher Helligkeit, verbesserte Energieauflösung des Elektronenenergieverlustes (EEL) und hocheffiziente energiedispersive Röntgendetektoren ermöglichen die 2D-Abbildung von Zusammensetzungen und chemischen Bindungsinformationen. „FOXON“ führt diese Entwicklungen fort.

Ziel ist die Anwendung einer operando TEM-Methode, um die Korrelation von elektrischem Verhalten, Struktur und chemischer Zusammensetzung von oxidbasierten Funktionsmaterialien simultan unter einem angelegten elektrischen Feld zu untersuchen. Pixel- und ultraschnelle Elektronen-Detektoren ermöglichen dabei die Erfassung eines Beugungsmusters für jeden Abtastpunkt und den Zugriff auf Informationen, die weit über die Möglichkeiten der Standard-STEM-Detektoren hinausgehen. Ständig steigende Rechenleistung und die Entwicklung von Werkzeugen zur effizienten Simulation von TEM-Experimenten sowie die ab-initio-Berechnung von Materialeigenschaften verbessern die Modellierung und Interpretation von TEM-Daten. Der nächste Schritt besteht darin, Reize wie elektrische Spannung und Temperatur in-situ auf ein funktionales Gerät anzuwenden und strukturelle und chemische Veränderungen mit höchstmöglicher Auflösung zu beobachten.

ERC Starting Grants

LOEWE-Zentrum: Aufforderung für Vollantrag – „Reliability Analytics“.

Prof. Dr.-Ing. Matthias Oechsner. Bild: Claus Völker
Prof. Dr.-Ing. Matthias Oechsner. Bild: Claus Völker

Wir gratulieren unserem Mitglied Professor Matthias Oechsner zur Aufforderung einen LOEWE-Vollantrag zu stellen: „Reliability Analytics“.

Die Grundfrage lautet: „Wie können Digitalisierung und 3D-Druck zum Erhalt der Leistungsfähigkeit des deutschen Maschinen- und Anlagenbaus beitragen?“ Die Federführung und Koordination obliegt Professor Matthias Oechsner (TU Darmstadt), mitbeteiligt sind die Fraunhofer-Institute für Betriebsfestigkeit und Systemzuverlässigkeit LBF, für Graphische Datenverarbeitung IGD, die Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS (Hanau) sowie die Frankfurt University of Applied Sciences.

Die Leistungsfähigkeit der deutschen Volkswirtschaft wird maßgeblich vom Maschinen- und Anlagenbau geprägt. Die Qualität der Produkte zeichnet sich besonders durch Zuverlässigkeit aus. „Durch die Digitalisierung sowie den 3D-Druck sieht sich diese bedeutungsvolle Branche künftig mit zentralen Herausforderungen konfrontiert, die einschneidende Veränderungen in der Entwicklung, Fertigung und Nutzung von Maschinen und Anlagen mit sich bringen werden“, so Professor Oechsner. Übergeordnetes Ziel von „Reliability Analytics“ ist die Gestaltung der Transformation des Maschinenbaus in eine zunehmend digitale Welt.

In einem interdisziplinären Verbund der Fachbereiche Informatik, Maschinenbau, Elektrotechnik, Materialwissenschaften, Mathematik, Bau- und Umweltwissenschaften sowie Wirtschaftswissenschaften entwickeln Forscherinnen und Forscher der TU Darmstadt mit ihren Partnern auf Basis digitaler Prozesse und 3D-Druckverfahren innovative Methoden und Prozesse für eine effiziente und nachhaltige Produktentwicklung, eine zukunftsweisende Zuverlässigkeitsvorhersage sowie für eine Bewertung der Ressourceneffizienz von Produkten des Maschinen- und Anlagenbaus.

Einladung: Workshop Kritikalität & Substitution @TUDa am 24.09.2018

Der Profilbereich „Vom Material zur Produktinnovation“ PMP lädt Sie herzlich zum Workshop Kritikalität & Substitution @TUDa ein.

Angesprochen sind alle Kolleginnen und Kollegen, die jetzt schon am Thema kritischer Rohstoffe sowie an Forschung zur Substitution in der Kette vom Element über Material, Prozess, Produkt bis zum Ausbringen in die Umwelt bzw. Recycling arbeiten oder an diesem Thema Interesse haben, sowohl Mitglieder aus der Professorenschaft, als auch PostDocs aus allen Fachgebieten der TU Darmstadt.

Ziel dieser Veranstaltung soll die Vernetzung bestehender Aktivitäten auf dem Gebiet Kritikalität & Substitution sein. Darüber hinaus sollen gemeinsame Themen identifiziert werden als Plattform zur Ausarbeitung von Verbundanträgen, diese auch in Kooperation mit der Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS in Hanau/Alzenau.

Anmeldungen erbeten bis zum 24. August an

Photo: Andreas Kelm
Photo: Andreas Kelm

Currently no news available.

Dr. Christina Birkel, Nachwuchsgruppenleiterin am Eduard-Zintl-Institut für Anorganische und Physikalische Chemie der TU Darmstadt, erhält einen Exploration Grant der Boehringer Ingelheim Stiftung, der mit 80.000 Euro dotiert ist. Birkel wird die Mittel für das Projekt „Wet chemical synthesis of nanoscale and magnetic ternary carbides“ verwenden.

Wir sagen herzlichen Glückwunsch!

Dr. Christina Birkel, Nachwuchsgruppenleiterin im Fachbereich Chemie, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, erhält einen Exploration Grant der Boehringer Ingelheim Stiftung. Der Exploration Grant ist mit 80.000 Euro dotiert. Dr. Birkel wird die Mittel für das Projekt „Wet chemical synthesis of nanoscale and magnetic ternary carbides“ verwenden.

Im Rahmen des Projekts von Dr. Christina Birkel wird der Großteil der bewilligten 80.000 Euro für die Finanzierung eines Postdoktoranden verwendet. Dieser wird ein Jahr lang an der Synthese eisenhaltiger Carbide – Kohlenstoff-basierter anorganischer Substanzen – arbeiten. Die Zielverbindungen gehören zu der Familie der so genannten MAX-Phasen, von denen bereits mehr als 70 Vertreter – jedoch bisher keine eisenhaltigen – synthetisiert wurden. Die möglichen Mitglieder dieser Materialklasse mit den chemischen Zusammensetzungen Fe2AlC und Fe2SiC versprechen sehr spannende magnetische Eigenschaften.

Im Projekt „Wet chemical synthesis of nanoscale and magnetic ternary carbides“ sollen diese über nasschemische Syntheserouten nanoskalig (im Milliardstel-Meter-Bereich) das erste Mal hergestellt werden. Magnetische Nanopartikel finden in diversen biomedizinischen Bereichen Anwendung, wie z.B. bei der gezielten Arzneimittelabgabe und der Magnetresonanztomographie. Neben den magnetischen Eigenschaften stehen daher außerdem die Biokompatibilität und Stabilität im Fokus; in diesen Bereichen können die genannten Carbid-Nanopartikel von großem Vorteil sein. Dadurch berührt das Projekt wichtige Bereiche aus der Chemie, den Lebens- und Materialwissenschaften.

Mit dem Exploration Grant ermöglicht es die Boehringer Ingelheim Stiftung herausragenden Grundlagenforscherinnen und Grundlagenforschern aus Biologie, Chemie und Medizin, neue Ideen zu bearbeiten. Die Förderung kann für Personal- und Sachmittel verwendet werden.


Alexander von Humboldt-Fellowship for Experienced Researcher for Prof. Yu

We congratulate Prof. Dr. Zhaoju from Xiamen University, China. She received the Alexander von Humboldt-Fellowship for Experienced Researcher. Prof. Yu will stay in the Dispersive Solid Group of the Materials Science Department from July 1, 2017- June 30, 2018. Her research interest is devoted to single-source-precursor route towards carbon nanophase containing SiCN ceramic nanocomposites with multifunctional electromagnetic properties.

An “ERC Starting Grant” (1.5 million euro) goes to Sascha Preu, Assistant Professor for terahertz systems technology.

Taking full advantage of the terahertz spectrum

Professor Sascha Preu and his team want to combine optical and terahertz technologies, in order to develop new photonic vector network analysers and photonic spectrum analysers that are far more powerful than the existing electronic terahertz systems.

The terahertz range (100 GHz-10 THz) lies between infrared radiation and microwaves, that is, on the boundary between electronics and optics. Despite the great advances made over the last two decades, this is still the least used range of the electromagnetic spectrum. The extremely high cost of systems to characterise circuits and components is not the only factor making it difficult to develop efficient components and systems. This is the starting point for Professor Preu’s project, that intends to cover a considerable part of the THz spectrum. The project focuses in particular on photonic systems that can also analyse THz chips. This should help make it easier to develop THz circuits and compact THz systems.

New technologies must be explored, which can allow wideband photonic components to be integrated on a chip and which can be used for system integration. Photonic circuits have multiple advantages compared to conventional metallic circuits – such as far lower losses at high frequencies.

Cool research – Scientists receive research funding from the European Union

Three TU Darmstadt scientists were awarded substantial grants from the European Research Council (ERC) for their excellent projects.

The outstanding research of Professor Oliver Gutfleisch on the substitution of critical raw and other materials for energy technologies is acknowledged with an “ERC Advanced Grant” (2.5 million euro).

Energy-efficient cooling technologies

Oliver Gutfleisch is researching into permanent magnets with a drastically reduced rare earth content, for use in electric motors and wind turbines, and also into new materials for innovative solid-state based cooling technologies. The key issue preoccupying Gutfleisch is: How can the earth’s population cope with the challenge of having to invest increasing amounts of energy in cooling systems in the 21st century. “Keeping cool is fundamental to a higher standard of living, and many countries are quick to install ever greater cooling capacities based on non-sustainable and less-efficient technologies”, says Gutfleisch.

Gutfleisch thinks that the best opportunities for a new, energy-efficient cooling technology quite possibly lie in using the magnetocaloric effect. “Admittedly, the materials used so far are based on critical metals. And current cooling concepts do not yet exploit the full potential of the materials.” This is why Gutfleisch and his team are planning to use so-called Heusler materials in a fundamentally new process regime that capitalises on the effects of hysteresis. Should the tests prove successful, this could revolutionise cooling technology right down to product level, and greatly reduce the global energy consumption for cooling systems.

Ringvorlesung BAUEN MIT PAPIER – VOM MATERIAL BIS ZUR GESTALTUNG VON PAPIER-BAUWERKEN erfolgreich im Sommersemester 2017 angelaufen

Flyer Additive Manufacturing
Flyer Additive Manufacturing

Das Loewe-Projekt BAMP! – Bauen mit Papier ist seit dem 1. Januar 2017 ein vom Land Hessen geförderter Forschungsschwerpunkt an der TU Darmstadt. Er beschäftigt sich in einem interdisziplinären Ansatz mit der Entwicklung von Grundlagen zum Einsatz von Papier als Baumaterial.

Papier ist kostengünstig herstellbar, besteht überwiegend aus nachwachsendem Rohstoff, bietet bezogen auf das Eigengewicht sehr gute Festigkeitseigenschaften und ist verhältnismäßig einfach chemisch zu funktionalisieren. Für Anwendungen wie Fassadenelemente mit hoher Wärmedämmwirkung oder als Schalenstrukturelemente fehlen heutigen Produkten jedoch die dreidimensionale Verformbarkeit, die Witterungs- und Langzeitbeständigkeit und andere Eigenschaften.

Ziel von BAMP! ist es, die noch vorhandenen Defizite bezüglich der Grundlagen zu eliminieren, Synergien aus den beteiligten Disziplinen zu nutzen und eine systematische Entwicklungsmethodik entlang der Materialverarbeitungskette zu erarbeiten. Dafür sind neue Gestaltungsansätze erforderlich, bekannte Materialeigenschaften sind auf die neuen Erfordernisse hin anzupassen. Auch die Fertigungstechnik muss weiter entwickelt werden.

Im Rahmen dieser Lehrveranstaltung nehmen wir Sie mit in aktuelle Forschungsansätze und bieten eine einzigartige Möglichkeit, einen Produktentstehungsprozess näher kennen zulernen und mitzugestalten.

Workshop AF@TU DA

Flyer Additive Manufacturing
Flyer Additive Manufacturing